4] Back

California State University, Chico / «
Intelligent Systems Laboratory S

Chico, CA 959290410 ,. ' S
P S
N \

http://www.gotbots.org

o

%o

LEGO Mindstorms RIS 2.0
Programming: NQC Code

B.A. Juliano and R.S. Renner
September 2004

NQC

e NQC is short for "Not Quite C”

— Written by Dave Baum
— Text-based language

— Based on C programming language,
but specialized for robots, and simpler
than full C

e Syntax is similar to C++ and Java

e More flexible than Lego RCX Code —
better for intermediate and higher level
programmers ...

—~ .
[| N | [[| el OnenOfficeor |
Source Project

GUIs for NQC

e RcxCC: RCX Command Center

— http://www.cs.uu.nl/people/markov/lego/rcxcc/

e BricxCC
— A GUI for using NQC in Windows environment
— Written by Mark Overmars
— http://bricxcc.sourceforge.net/
e MacNQC:
— A GUI for using NQC in Mac environment
— Written by K. Robert Bate
— http://homepage.mac.com/rbate/MacNQC/

—~ .
[| N | [[| el OnenOfficeor |
Source Project

Simple example of NQC code

task main ()
{
SetSensor (SENSOR 1, SENSOR LIGHT) ;
On (OUT A + OUT C);
while (true)
{
if (SENSOR 1 < 43)

{

SetDirection (OUT A + OUT C, OUT FWD);
}

else

{
SetDirection (OUT A + OUT C, OUT REV);

Source Project

NQC Code vs RCX Code ...

e Every RCX = Every NQC program contains

program starts a block “task main()”
with a program ”Hj>

block

e On/Off blocks = Qutput ports are called
refer to output ﬂﬂj> OUT_A, OUT_B, OUT_C
ports A, B, C = Control output with

statements OnFwd(),

e Sensor blocks OnRev(), Off(), etc.
assign input
Eg,f,tsifg and I]Uj> = Input ports are called
associate SENSOR_1 (or 2 or 3)
actions with
sensor readings N

[| N | [[| el OnenOfficeor |

What does this program do?

task main ()

{

SetPower
(OUT_A+OUT_C,2);

OnFwd (OUT A+OUT C) ;
Wait (400) ;
OnRev (OUT A+OUT C) ;
Walit (400) ;

Off (OUT A+OUT C);

What about this program?

#define MOVE TIME 100 ® #define

#define TURN TIME 85 — Preprocessor directive — use
before task main()
task main () — Used to define ‘'macros’, i.e.,
{ simple name substitutions
repeat (4) that cannot be changed in
{ the program
OnFwd (OUT A+OUT C) ; — Here it is used to define
Wait (MOVE TIME); constants
OnRev (OUT_C) ; e repeat() { ... }
Wait (TURN TIME) ; — A control structure that
} alters the usual sequential
Off (OUT A+OUT C); execution
} — Permits a block of

statements to be repeated a
specified number of times.

v .
[| N | [[| el OrenOfficeor
Source Project

ot bots?

http://isLecst.csuchico.edu/

Nesting and Comments

/* 10 SQUARES by Mark Overmars
This program make the robot run

*/

#define MOVE TIME 100
#define TURN TIME 85

task main ()

{
repeat (10)

{
repeat (4)

{

OnFwd (OUT A+OUT C) ;

Wait (MOVE TIME) ;
OnRev (OUT C) ;
Wait (TURN TIME) ;

}
}
Off (OUT A+OUT C) ;

}

// Time
// Time

// Make

// Now turn the motors off

s .
_ OpenOfflce.org
[| N | [[| Soutc Proju

10 squares

for a straight move
for turning 90 degrees

10 squares

Variables

e A constant is a named value that cannot be
changed.

— #define MOVE_TIME 100
e A variable is a named value that can be changed
— You must first declare the variable:
e int a; //declare variable named 'a’
e int b = 37; //declare and initialize variable ‘b’
— You declare each variable only once

— If you declare inside a task, the variable only
exists inside that task (local variable)

a — If you declare outside any task, the variable
exists for all tasks (global variable)

[| N | [[| bk OBnurcgﬂinl org

Arithmetic Operations

The code at right illustrates some
arithmetic operations:

e assignment of a value to a
variable

-+, I/
e Usual arithmetic operators
—_ ++ -
e Increment (add 1), decrement
(subtract 1)
- +=,-= *_I /_
e Add (subtract, multiply, divide)

value on rlght to current value of
variable on left;

e intn = 10;
n *=3; //nisnow10*3—30
Trace the code at right and give
the final values of the variables
aaa, bbb, and ccc. Say which are
local and which are global

int aaa

int bbb;

= 10

task main ()

{

int ccc;

aaa =
bbb =
cce =
ccc

daad

+
cce /= 5;

thhbinhbbishbhlh Bhbnhhbiahhbk 000 BARAAAE 000 hhbbbiahhbh R v

e Random(n)

— An expression
equal to a random
value from 0 to n
(inclusive)

— Changes each time
It IS executes

e \What does the code
at right do?

int move time,

task main ()

{

The function Random()

while (true)

{

turn time;

Random (600) ;
turn time = Random(40) ;
OnFwd (OUT A+OUT C) ;

Wait (move time);

OnRev (OUT A) ;
Wait (turn time);

move time =

Source Project

Control Structures

o A control structure is any statement
that alters the order in which other
statements are executed.

e NQC decision control structures:

— if (condition) {...}

— if (condition) {...} else {...}
e NQC iteration (repetition) control

structures

— repeat (expression) {...}
— while (condition) {...}

— do (condition) {...}

— until (condition) {...}

=
_ OpenOfflce.org
[| N | [[| Soure Projst

Boolean (true/false) operators

== equal to (different from =, which is assignment)

< smaller than

<= smaller than or equal to
> larger than

>= larger than or equal to
1= not equal to

true always true

false never true
ttt '= 3 true when ttt is not equal to 3

(ttt >=5) && (ttt <= 10)
true when ttt lies between 5 and 10
(aaa == 10) || (bbb == 10)
true if either aaa or bbb (or both) are equal to 10
[| N | [[| bk Openffi

Example

#define MOVE TIME 100
#define TURN TIME 85

task main ()

{

while (true)

{

OnFwd (OUT A+OUT C) ;

Wait (MOVE TIME) ;
if (Random(l) ==
{

OnRev (OUT C) ;
}
else
{

OnRev (OUT A) ;

}
Wait (TURN TIME) ;

)

e \What does code at
left do?

e (Classic ==
error:

— int n = 0;
until (n = 10)
{

PlaySound (1) ;

[| N | [[| .-0

Using Sensors

e To use a sensor, we
— 1. Assign it to an input port
e SetSensor(SENSOR_1, SENSOR_TOUCH);
— 2. Choose actions based on its values:
o if (SENSOR_1 ==1){...}

e A sensor in a program is like a constant —
it has a value that you cannot change in
the program (but its value is changed by
the physical sensor readings from the
input port)

—~ .
[| N | [[| el OrenOfficeor
Source Project

Example

® Here IS some #define THRESHOLD 40
line following

. task main ()
code: {

SetSensor (SENSOR 2, SENSOR LIGHT) ;
OnFwd (OUT A+OUT C) ;
while (true)

{

if (SENSOR 2 > THRESHOLD)

{

OnRev (OUT C) ;

until (SENSOR 2 <= THRESHOLD) ;
OnFwd (OUT_ A+OUT C) ;

z A
X

ot bots?

http://isLecst.csuchico.edu/

3

Tasks & Event-Driven Programming

e Each task consists of a set of statements that
are executed sequentially

e The RCX can run up to 10 tasks concurrently:
— As we know, there must be at least one task, named
main()

— We typically use multiple tasks so that RCX can be
doing something (moving, making sounds) while at
the same time getting information from sensors

e Event-driven programming:

— Programming in which program statements are
executed in response to events (sensor readings,
mouse clicks or movements, etc.)

— Event-driven program is often parallel — checking for
several events, and responding, all at the same time

=
_ OpenOfflce.org
[| N | [[| Soutc Proju

3

Syntax for tasks

e Each task has its own name

e The only task automatically started is task main()

— Other tasks are started with the start statement, and stopped with the
stop statement (Note: no parenthesis after task name)

task main ()
{
SetSensor (SENSOR 1,
SENSOR_ TOUCH) ;
start check sensors;
start move square;

}

-~
@B

ot bots?

http://isLecst.csuchico.edu/

task move square ()
{

while (true)

{
OnFwd (OUT A+OUT C);
Wait (100) ;

OnRev (OUT C) ;

Wait (85) ;

task check sensors()

{
while
{
if
{
stop move square;
OnRev (OUT A+OUT C);
Wait (50) ;
OnFwd (OUT _A) ;
Wait (85) ;
start move square;

(true)

(SENSOR 1 == 1)

Source Project

Using tasks

o Advice:
— Always ask if you really need another task

— Never permit two tasks to do something
(move, make sounds) at the same time, to
prevent conflicts

e Whenever one task is doing something, first stop
the other tasks

Modularity in programming

e Modularity: Writing programs by creating
small blocks of code, then putting them
together to form a larger block (module)

e Advantages of modularity:

— Readability: Easier to read several small
blocks of code than one large one

— Testability: Can test each module
individually, making it easier to find and fix
errors.

— Reusability: Can use existing modules to
build new programs that are more complex

—~ .
[| N | [[| el OrenOfficeor
Source Project

Subroutines, inline fns & macros

e In NQC a module is essentially a block of code
that is given its own name. In NQC there are
three types of modules:

— Subroutines
— Inline functions
— Macros
e Each has advantages and disadvantages

Subroutines, inline fns & macros

e Subroutine syntax:
— Named using word sub: sub turn_around();
— Invoked by just using name: turn_around();
e Inline function syntax:
— Named using word void: void turn_around();
— Invoked by just using name: turn_around();
e Macro syntax:

— Named on one line using word #define:
#define turn_around OnRev(OUT_C);
Wait(340);0nFwd(OUT_A+OUT_C);

S — Invoked by just using name (without
- parentheses): turn_around;

[| N | [[| bk Opm.cgf.fm 0|

Subroutines: Pros and Cons

e At most 8 subroutines may be used

e Code stored only once in RCX, regardless of
how many times subroutine is called

e Cannot call one subroutine from another
subroutine

e No parameters permitted (variables inside
parentheses)

e Advice: For technical reasons, do not call
subroutines from different tasks

Inline functions: Pros and Cons
e Multiple copies in RCX

void turn around (int

memory: one for each time turntime)
it's called { OnRev (OUT C); Wait
I - 1; (turntime) ;
. Rl%glgggson number of inline oFwd (U 21007)

}

e OK to call from different task main ()

tasks {OnFwd (OUT A+OUT C) ;
e Inline functions can have Wait (100);

parameters (in definition) turn_around(200)

and arguments (in call): mait (200) 7

. turn around (50) ;

e Advice: Generally prefer Wait (100) ;

inline functions over furn around (300) ;

subroutines, unless limited Off (OUT A+OUT C);

memory in RCX is a }

problem _~

[| N | [[| e © 9
nnnnnnnnnnn _

Macros: Pros and Cons

e Must define on a single line
e Multiple copies, one for each call
e Can use parameters/arguments

{

}

#define forwards(s,t) SetPower(OUT_A+OUT_C,s);OnFwd(OUT_A+OUT_C);Wait(t);
#define turn_right(s,t) SetPower(OUT _A+OUT_C,s);OnFwd(OUT_A);OnRev(OUT _C);Wait(t);

@ file:///D:/Desktop/ferdinand.gif

task main ()

forwards (3, 200) ;
turn right(7,85);
forwards (7,100) ;
turn right(7,85);
forwards (3,200) ; Marcos Macro
Off (OUT A+OUT C) ;

ot bots?
http://isLecst.csuchico.edu/

Source Project

Modularity Example

o Example: Suppose we want to build a ‘line
sweeper’ robot, that follows a line and, if it
detects an obstruction, uses a sweeper arm to
push it off the line.

e ‘Top-Down’ design: Design this first as a collection
of smaller tasks (non-technical meaning) and build
each one using inline functions

— Note: We'll often use the word ‘subroutine’
generically, to mean either a subroutine, inline
function, or macro

— Ferrari avoids use of multiple tasks when

possible .
T T T T sl el ORenOfficeo

‘Line sweeper’ top-down design

Program outline uses subroutines to
carry out individual jobs

. e ElSer s
We can write and test each of these 325 =00 = 22

int line = 35;

separately
If we change the physical design, we ?aSk ey
can easily change one subroutine Initialize();
— Initialize(): Assigns ports to L
Sensors {
— Go_Straight(): Starts motion Ei‘i?;ﬁ?fiif)“
— Check_Bumper(): detects and |,)
deals with

— Follow_Line(): moves forward,
keeping to line
T T T T A iy OEnOfficeon

Inline funtions

e Format of inline function (subroutine) definitions:
— void FunctionName()

{

Y
e Appears outside task main()

— We'll put them after task main()

e Function is invoked by using name
as statement:

list of statements

void Check Bumper ()

— Initialize(), {
void Initialize () if (SENSOR 1==1)
{ {
SetSensor (SENSOR 1, SENSOR TOUCH) ; Stop () s
SetSensor (SENSOR 2, SENSOR LIGHT) ; Remove Obstacle();

Go Straight () ;

Source Project

Follow_Line()

void Follow Line ()

{

{ Turn Right();
}

{ Turn Left();
}

else
{ Go_Straight();
}

if (SENSOR 2<=floor + 5)

else if (SENSOR 2>=line - 5)

Sample code (simplified)
for a subroutine to
follow the left edge of a
black line.

void Go Straight ()
{ OnFwd (OUT A+OUT C) ;
}

void Turn Left ()
{ Off (OUT_A);
OnFwd (OUT C) ;

Source Project

Remove_QObstacle()

e Sample code (simplified) for
a subroutine to remove an
obstacle with an arm.

void Remove Obstacle ()

{

OnFwd (OUT B) ;
Wait (200) ;
OnRev (OUT B) ;
Wait (200) ;
Off (OUT_B) ;

Source Project

References

e Dean, Alice M. CS 102B: Robot Design,
http://www.skidmore.edu/~adean/CS102B0409/

e InSciTE: Innovations in Science and Technology
Education, www.HighTechKids.org

e EGO.com Mindstorms Home,
mindstorms.lego.com

